Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748061

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Assuntos
Filogenia , Animais , Proteínas Mitocondriais/genética , Composição de Bases/genética , DNA Mitocondrial/genética , Uso do Códon/genética , Truta/genética , Truta/classificação , Códon/genética , Genoma Mitocondrial/genética , Evolução Molecular , Proteínas de Peixes/genética , Genômica/métodos , Variação Genética/genética , Cyprinidae/genética , Cyprinidae/classificação
2.
Invertebr Syst ; 382024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38744494

RESUMO

Ulopinae is a distinctive subfamily of leafhoppers that is widely distributed across the Afrotropical, Palearctic, Indomalayan and Australasian regions. The ulopine fauna of Australia is entirely endemic and includes two tribes of striking appearance, the Ulopini and Cephalelini. Knowledge of these groups is fragmentary and in many instances, no information is available beyond original descriptions. We assess the monophyly, phylogenetic placement and species-level diversity of the Ulopini genus Austrolopa . Phylogenetic analyses based on sequence data from target nuclear loci (18S , 28S , H2A and H3 ) and mitochondrial genomes (15 genes) for 23 membracoid taxa yielded congruent topologies. Our results provide strong evidence for the monophyly of Ulopinae and a clade consisting of Ulopini + Cephalelini. However, a non-monophyletic Cephalelini arises from within a polyphyletic Ulopini. Austrolopa was strongly recovered as monophyletic in all analyses, a result also supported by morphological features. The genus currently includes six species, three of which are described based on morphological and molecular data: Austrolopa botanica , sp. nov. , Austrolopa rotunda , sp. nov. and Austrolopa sublima , sp. nov. A lectotype designation is provided for Austrolopa kingensis Evans, 1937, sp. reval. Our findings illustrate that the Australian Ulopinae is far more diverse than currently circumscribed and several species of Austrolopa are yet to be recognised. ZooBank: urn:lsid:zoobank.org:pub:1480285B-8F61-4659-A929-2B1EF3168868.


Assuntos
Hemípteros , Filogenia , Animais , Hemípteros/genética , Hemípteros/classificação , Hemípteros/anatomia & histologia , Austrália , Especificidade da Espécie , Genoma Mitocondrial/genética
3.
BMC Ecol Evol ; 24(1): 42, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589809

RESUMO

BACKGROUND: Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS: Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS: This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.


Assuntos
Gastrópodes , Genoma Mitocondrial , Humanos , Animais , Filogenia , Genoma Mitocondrial/genética , Gastrópodes/genética , Ecossistema , Lagos
4.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396956

RESUMO

Ramshorn snails from the family Planorbidae are important freshwater snails due to their low trophic level, and some of them act as intermediate hosts for zoonotic trematodes. There are about 250 species from 40 genera of Planorbidae, but only 14 species from 5 genera (Anisus, Biomphalaria, Bulinus, Gyraulus, and Planorbella) have sequenced complete mitochondrial genomes (mitogenomes). In this study, we sequenced and assembled a high-quality mitogenome of a ramshorn snail, Polypylis sp. TS-2018, which represented the first mitogenome of the genus. The mitogenome of Polypylis sp. TS-2018 is 13,749 bp in length, which is shorter than that of most gastropods. It contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA). We compared mitogenome characteristics, selection pressure, and gene rearrangement among all of the available mitogenomes of ramshorn snails. We found that the nonsynonymous and synonymous substitution rates (Ka/Ks) of most PCGs indicated purifying and negative selection, except for atp8 of Anisus, Biomphalaria, and Gyraulus, which indicated positive selection. We observed that transpositions and reverse transpositions occurred on 10 tRNAs and rrnS, which resulted in six gene arrangement types. We reconstructed the phylogenetic trees using the sequences of PCGs and rRNAs and strongly supported the monophyly of each genus, as well as three tribes in Planorbidae. Both the gene rearrangement and phylogenetic results suggested that Polypylis had a close relationship with Anisus and Gyraulus, while Bulinus was the sister group to all of the other genera. Our results provide useful data for further investigation of species identification, population genetics, and phylogenetics among ramshorn snails.


Assuntos
Acanthaceae , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Caramujos/genética , RNA Ribossômico/genética , RNA de Transferência/genética
5.
Int J Biol Macromol ; 257(Pt 1): 128571, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052286

RESUMO

Duhuo, a member of the Angelica family, is widely used to treat ailments such as rheumatic pain. It possesses a diverse array of bioactivities, including anti-tumor, anti-inflammatory, and analgesic properties, as recent pharmacological research has revealed. Nevertheless, the mtDNA of Angelica species remains relatively unexplored. To address this gap, we sequenced and assembled the mtDNA of A. biserrata to shed light on its genetic mechanisms and evolutionary pathways. Our investigation indicated a distinctive multi-branched conformation in the A. biserrata mtDNA. A comprehensive analysis of protein-coding sequences (PCGs) across six closely related species revealed the presence of 11 shared genes in their mitochondrial genomes. Intriguingly, positive selection emerged as a significant factor in the evolution of the atp4, matR, nad3, and nad7 genes. In addition, our data highlighted a recurring trend of homologous fragment migration between chloroplast and mitochondrial organelles. We identified 13 homologous fragments spanning both chloroplast and mitochondrial genomes. The phylogenetic tree established a close relationship between A. biserrata and Saposhnikovia divaricata. To sum up, our research would contribute to the application of population genetics and evolutionary studies in the genus Acanthopanax and other genera in the Araliaceae family.


Assuntos
Angelica , Genoma Mitocondrial , Medicina Tradicional Chinesa , Angelica/genética , Filogenia , Genoma Mitocondrial/genética , DNA Mitocondrial
6.
Gene ; 896: 148054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042216

RESUMO

The deep-sea environment is characterized by extreme and inhospitable conditions, including oxygen depletion, low temperatures, high pressure, absence of light, and limited food availability. Mitochondria and mitogenomes play a crudial role in aerobic respiration to generate energy for eukaryotes. Here, using the Illumina Hiseq 4000 platform, we performed mitogenome sequencing for five deep-sea caridean species: Lebbeus shinkaiae, Lebbeus Formosus, Glyphocrangon regalis, Heterocarpus dorsalis, and Heterocarpus laevigatus, and five deep-sea caridean mitogenomes were assembled and identified. Each of the five mitogenomes contained 13 protein-coding genes, 2 rRNAs and 22 tRNAs. Specific elements, such as tandem repeats and AT-rich sequences, were observed in the control regions of Lebbeus formosus and Lebbeus shinkaiae, potentially take a role in regulating mitochondrial genome replication and transcription. The gene order of all obtained mitogenomes follows caridean ancestral type organization. Phylogenetic analysis shows a robustly supported phylogenetic tree for the infraorder Caridea. The monophyly of the families included in this study was strongly supported. This study supports the monophyly of Oplophoroidea, but rejects the monophyletic status of Nematocarcinoidea, Crangonoidea, and Alpheoidea. At the genus level, Plesionika is polyphyletic and Rimicaris is paraphyletic in our analysis. Furthermore, Paralebbeus may be considered invalid and synonymous with Lebbeus. Positive selection analysis reveals evidence for adaptive changes in the mitogenome of different deep-sea caridean lineages. Nine residues located in cox1, cox3, atp6, nad1, nad2, nad4, nad5, nad6 and cytb were determined to have undergone positive selection. Mitogenome of different deep-sea lineages experienced different positive selection, and the lineage represented by Alvinocarididae living in deep-sea hydrothermal vents experienced the strongest positive selection. This study provides valuable insights into the adaptive evolution of deep-sea shrimps at the mitochondrial, highlighting the mitogenomic strategy that contribute to their unique adaptations in the deep-sea environment.


Assuntos
Genoma Mitocondrial , Humanos , Filogenia , Genoma Mitocondrial/genética , RNA de Transferência/genética , RNA Ribossômico/genética
7.
Genes (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136932

RESUMO

Hemiculterella wui is an endemic small freshwater fish, distributed in the Pearl River system and Qiantang River, China. In this study, we identified and annotated the complete mitochondrial genome sequence of H. wui. The mitochondrial genome was 16,619 bp in length and contained 13 protein coding genes (PCGs), two rRNA genes, 22 tRNA genes, and one control region. The nucleotide composition of the mitochondrial genome was 29.9% A, 25.3% T, 27.4% C, and 17.5% G, respectively. Most PCGs used the ATG start codon, except COI and ATPase 8 started with the GTG start codon. Five PCGs used the TAA termination codon and ATPase 8 ended with the TAG stop codon, and the remaining seven genes used two incomplete stop codons (T and TA). Most of the tRNA genes showed classical cloverleaf secondary structures, except that tRNASer(AGY) lacked the dihydrouracil loop. The average Ka/Ks value of the ATPase 8 gene was the highest, while the average Ka/Ks value of the COI gene was the lowest. Phylogenetic analyses showed that H. wui has a very close relationship with Pseudohemiculter dispar and H. sauvagei. This study will provide a valuable basis for further studies of taxonomy and phylogenetic analyses in H. wui and Xenocyprididae.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Cipriniformes/genética , Filogenia , Códon de Iniciação , Genoma Mitocondrial/genética , Códon de Terminação , RNA de Transferência/genética , RNA de Transferência/química , Adenosina Trifosfatases/genética
8.
Mol Biol Rep ; 50(12): 10301-10313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971570

RESUMO

BACKGROUND: Brachyura crab is the largest branch of Decapoda crustacean. Phylogenetic relationships within Brachyura remain controversial to be investigated. The mitochondrial genome (mitogenome) is an important molecular marker for studying the phylogenetic relationships of Brachyura. METHODS AND RESULTS: To understand the phylogeny of Brachyura, the three complete mitogenomes from Charybdis annulata, Leptodius exaratus, and Spider crab were sequenced and annotated. Their full length was 15,747, 15,716, and 16,608 bp long, respectively. The first two crabs both contained 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. However, Spider crab contained 13 PCGs, two rRNA genes, 25 tRNA genes and a control region. The mitogenomes of each of the three crabs exhibited high AT content (67.8%, 69.1%, and 70.8%), with negative AT skews (-0.014, - 0.028, and - 0.017) and GC skews (-0.269, - 0.286, and - 0.341). The gene order of C. annulata was identical to the ancestor of Brachyura. Compared with the ancestor of Brachyura, L. exaratus exhibited the gene rearrangements of Val (V)-rrnS-control region, and Spider crab had the four copies of Lys (K). Phylogenetic analyses indicated that C. annulata belonged to Portunidae family, Portunoidea superfamilies, L. exaratus belonged to Xanthidae family, Xanthoidea superfamilies, and Spider crab belonged to Mithracidae family, Majoidea superfamilies. Phylogenetic analyses showed that the two species (Somanniathelphusa boyangensis and Huananpotamon lichuanense) belonging to the Potamoidea were sister groups to the Thoracotremata, thus supporting the conclusion that Heterotremata is polyphyletic. CONCLUSION: The results of this study enriched the crab mitogenome database and enabled us to better understand the phylogenetic relationships of Brachyura.


Assuntos
Braquiúros , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Braquiúros/genética , Rearranjo Gênico/genética , RNA de Transferência/genética
9.
F1000Res ; 12: 330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842340

RESUMO

Despite efforts to minimize the impacts of malaria and reduce the number of primary vectors, malaria has yet to be eliminated in Zambia. Understudied vector species may perpetuate malaria transmission in pre-elimination settings. Anopheles squamosus is one of the most abundantly caught mosquito species in southern Zambia and has previously been found with Plasmodium falciparum sporozoites, a causal agent of human malaria. This species may be a critical vector of malaria transmission, however, there is a lack of genetic information available for An. squamosus. We report the first genome data and the first complete mitogenome (Mt) sequence of An. squamosus. The sequence was extracted from one individual mosquito from the Chidakwa area in Macha, Zambia. The raw reads were obtained using Illumina Novaseq 6000 and assembled through NOVOplasty alignment with related species. The length of the An. squamosus Mt was 15,351 bp, with 77.9 % AT content. The closest match to the whole mitochondrial genome in the phylogenetic tree is the African malaria mosquito, Anopheles gambiae. Its genome data is available through National Center for Biotechnology Information (NCBI) Sequencing Reads Archive (SRA) with accession number SRR22114392. The mitochondrial genome was deposited in NCBI GenBank with the accession number OP776919. The ITS2 containing contig sequence was deposited in GenBank with the accession number OQ241725. Mitogenome annotation and a phylogenetic tree with related Anopheles mosquito species are provided.


Assuntos
Anopheles , Carcinoma de Células Escamosas , Genoma Mitocondrial , Malária , Animais , Anopheles/genética , Genoma Mitocondrial/genética , Malária/genética , Mosquitos Vetores/genética , Filogenia , Zâmbia
10.
Mol Biol Rep ; 50(12): 9897-9908, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864662

RESUMO

BACKGROUND: Tabanidae (Horse-Flies or Deer-Flies) are one of the most economically important as well as medically significant haematophagous insect family within the order Diptera. Members of this group are also responsible for the mortality of substantial number of live-stock every year. Due to their pathogen transmission potential and vector competencies makes them an important insect group to study. Till now, mitochondrial genome of 18 species of tabanids were available. METHODS AND RESULTS: The complete mitogenome of three species T. diversifrons (15,809 bp), T. rubidus (15,878 bp) and T. tenens (15,872 bp) were generated by Next generation sequencing method. They consist 37 genes, with a positive AT skew and a negative GC skew. The gene order of these three species is similar to the typical gene arrangement of infra-order Tabanomorpha. Most of the tRNAs showed typical clover-leaf secondary structure except trnS1, which lacks the DHU arm. The sliding window analysis showed that the nad4L is the most conserved while atp8, and nad6 are the most variable genes. Moreover, the ratios of non-synonymous to synonymous substitution rates indicated that all PCGs under the purifying selection. Phylogeny revealed Chrysops and Haematopota are monophyletic while species of Hybomitra are nested within the polyphyletic clade of Tabanus. T. diversifrons exhibits sister relationship with Atylotus miser. Two morphologically divergent species T. rubidus and T. tenens are found to be genetically similar and indistinguishable by mitochondrial genome. CONCLUSIONS: The hypervariable genes like atp8 and nad6 can be used as molecular markers for the identification of recently diverged lineages of family Tabanidae. Further, to address uncertainties arising from the two morphological divergent species, it is imperative to obtain data from nuclear gene markers.


Assuntos
Cervos , Dípteros , Genoma Mitocondrial , Animais , Dípteros/genética , Genoma Mitocondrial/genética , Cervos/genética , Filogenia , RNA de Transferência/genética
11.
BMC Ecol Evol ; 23(1): 28, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400779

RESUMO

BACKGROUND: The false codling moth (FCM), Thaumatotibia leucotreta (Meyrick, 1913), is a significant pest of various important economic crops and is a EU quarantine pest. In the last decade the pest has been reported on Rosa spp. In this study we determined whether this shift occurred within specific FCM populations across seven eastern sub-Saharan countries or whether the species opportunistically switches to this novel host as it presents itself. To achieve this, we assessed the genetic diversity of complete mitogenomes of T. leucotreta specimens intercepted at import and analysed potential linkages with the geographical origin and host species. RESULTS: Genomic, geographical and host information were integrated into a T. leucotreta Nextstrain build which contains 95 complete mitogenomes generated from material intercepted at import between January 2013 and December 2018. Samples represented seven sub-Saharan countries and mitogenomic sequences grouped in six main clades. DISCUSSION: If host strains of FCM would exist, specialization from a single haplotype towards the novel host is expected. Instead, we find specimens intercepted on Rosa spp. in all six clades. The absence of linkage between genotype and host suggests opportunistic expansion to the new host plant. This underlines risks of introducing new plant species to an area as the effect of pests already present on the new plant might be unpredictable with current knowledge.


Assuntos
Genoma Mitocondrial , Mariposas , Animais , Genoma Mitocondrial/genética , Especificidade de Hospedeiro , Mariposas/genética , Genótipo , Haplótipos/genética
12.
Mol Ecol ; 32(17): 4844-4862, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515525

RESUMO

Many organisms possess multiple discrete genomes (i.e. nuclear and organellar), which are inherited separately and may have unique and even conflicting evolutionary histories. Phylogenetic reconstructions from these discrete genomes can yield different patterns of relatedness, a phenomenon known as cytonuclear discordance. In many animals, mitonuclear discordance (i.e. discordant evolutionary histories between the nuclear and mitochondrial genomes) has been widely documented, but its causes are often considered idiosyncratic and inscrutable. We show that a case of mitonuclear discordance in Todiramphus kingfishers can be explained by extensive genome-wide incomplete lineage sorting (ILS), likely a result of the explosive diversification history of this genus. For these kingfishers, quartet frequencies reveal that the nuclear genome is dominated by discordant topologies, with none of the internal branches in our consensus nuclear tree recovered in >50% of genome-wide gene trees. Meanwhile, a lack of inter-species shared ancestry, non-significant pairwise tests for gene flow, and little evidence for meaningful migration edges between species, leads to the conclusion that gene flow cannot explain the mitonuclear discordance we observe. This lack of evidence for gene flow combined with evidence for extensive genome-wide gene tree discordance, a hallmark of ILS, leads us to conclude that the mitonuclear discordance we observe likely results from ILS, specifically deep coalescence of the mitochondrial genome. Based on this case study, we hypothesize that similar demographic histories in other 'great speciator' taxa across the Indo-Pacific likely predispose these groups to high levels of ILS and high likelihoods of mitonuclear discordance.


Assuntos
Fluxo Gênico , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Núcleo Celular/genética , Aves/genética
13.
J Transl Med ; 21(1): 512, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507746

RESUMO

Mitochondria are the only organelles regulated by two genomes. The coordinated translation of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), which together co-encode the subunits of the oxidative phosphorylation (OXPHOS) complex, is critical for determining the metabolic plasticity of tumor cells. RNA-binding protein (RBP) is a post-transcriptional regulatory factor that plays a pivotal role in determining the fate of mRNA. RBP rapidly and effectively reshapes the mitochondrial proteome in response to intracellular and extracellular stressors, mediating the cytoplasmic and mitochondrial translation balance to adjust mitochondrial respiratory capacity and provide energy for tumor cells to adapt to different environmental pressures and growth needs. This review highlights the ability of RBPs to use liquid-liquid phase separation (LLPS) as a platform for translation regulation, integrating nuclear-mitochondrial positive and retrograde signals to coordinate cross-department translation, reshape mitochondrial energy metabolism, and promote the development and survival of tumor cells.


Assuntos
Genoma Mitocondrial , Genoma Mitocondrial/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Núcleo Celular/metabolismo
14.
PeerJ ; 11: e15483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283890

RESUMO

It is common to use whole mitochondrial genomes to analyze phylogenetic relationships among insects. In this study, seven mitogenomes of Tenebrionidae are newly sequenced and annotated. Among them, four species (Cerogira janthinipennis (Fairmaire, 1886), Luprops yunnanus (Fairmaire, 1887), Anaedus unidentasus Wang & Ren, 2007, and Spinolyprops cribricollis Schawaller, 2012) represent the subfamily Lagriinae. In this subfamily, the mitogenomes of the tribes Goniaderini (A. unidentasus) and Lupropini (L. yunnanus and S. cribricollis) were first reported; they were found to be 15,328-16,437 bp in length and encode 37 typical mitochondrial genes (13 PCGs, 2 rRNAs, 22 tRNAs, and a single noncoding control region). Most protein-coding genes in these mitogenomes have typical ATN start codons and TAR or an incomplete stop codon T-. In these four lagriine species, F, L2, I, and N are the most frequently used amino acids. In the 13 PCGs, the gene atp8 (Pi = 0.978) was the most diverse nucleotide, while cox1 was the most conserved gene with the lowest value (Pi = 0.211). The phylogenetic results suggest that Pimelinae, Lagriinae, Blaptinae, Stenochiinae, and Alleculinae are monophyletic, Diaperinae is paraphyletic, and Tenebrioninae appears polyphyletic. In Lagriinae, the tribe Lupropini appears paraphyletic because Spinolyprops is clustered with Anaedus in Goniaderini. These mitogenomic data provide important molecular data for the phylogeny of Tenebrionidae.


Assuntos
Besouros , Genoma Mitocondrial , Animais , Besouros/genética , Filogenia , Genoma Mitocondrial/genética , RNA de Transferência/genética , RNA Ribossômico/genética
15.
Syst Parasitol ; 100(5): 571-578, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382800

RESUMO

The domestic pig louse Haematopinus suis (Linnaeus, 1758) (Phthiraptera: Anoplura) is a common ectoparasite of domestic pigs, which can act as a vector of various infectious disease agents. Despite its significance, the molecular genetics, biology and systematics of H. suis from China have not been studied in detail. In the present study, the entire mitochondrial (mt) genome of H. suis isolate from China was sequenced and compared with that of H. suis isolate from Australia. We identified 37 mt genes located on nine circular mt minichromosomes, 2.9 kb-4.2 kb in size, each containing 2-8 genes and one large non-coding region (NCR) (1,957 bp-2,226 bp). The number of minichromosomes, gene content, and gene order in H. suis isolates from China and Australia are identical. Total sequence identity across coding regions was 96.3% between H. suis isolates from China and Australia. For the 13 protein-coding genes, sequence differences ranged from 2.8%-6.5% consistent nucleotides with amino acids. Our result is H. suis isolates from China and Australia being the same H. suis species. The present study determined the entire mt genome of H. suis from China, providing additional genetic markers for studying the molecular genetics, biology and systematics of domestic pig louse.


Assuntos
Anoplura , Genoma Mitocondrial , Suínos , Animais , Sus scrofa , Genoma Mitocondrial/genética , Especificidade da Espécie , Anoplura/genética , Insetos/genética , Filogenia
16.
Genes (Basel) ; 14(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239378

RESUMO

The Nymphalidae family of cosmopolitan butterflies (Lepidoptera) comprises approximately 7200 species found on all continents and in all habitats. However, debate persists regarding the phylogenetic relationships within this family. In this study, we assembled and annotated eight mitogenomes of Nymphalidae, constituting the first report of complete mitogenomes for this family. Comparative analysis of 105 mitochondrial genomes revealed that the gene compositions and orders were identical to the ancestral insect mitogenome, except for Callerebia polyphemus trnV being before trnL and Limenitis homeyeri having two trnL genes. The results regarding length variation, AT bias, and codon usage were consistent with previous reports on butterfly mitogenomes. Our analysis indicated that the subfamilies Limenitinae, Nymphalinae, Apaturinae, Satyrinae, Charaxinae, Heliconiinae, and Danainae are monophyletic, while the subfamily the subfamily Cyrestinae is polyphyletic. Danainae is the base of the phylogenetic tree. At the tribe level, Euthaliini in Limenitinae; Melitaeini and Kallimini in Nymphalinae; Pseudergolini in Cyrestinae; Mycalesini, Coenonymphini, Ypthimini, Satyrini, and Melanitini in Satyrinae; and Charaxini in Charaxinae are regarded as monophyletic groups. However, the tribe Lethini in Satyrinae is paraphyletic, while the tribes Limenitini and Neptini in Limenitinae, Nymphalini and Hypolimni in Nymphalinae, and Danaini and Euploeini in Danainae are polyphyletic. This study is the first to report the gene features and phylogenetic relationships of the Nymphalidae family based on mitogenome analysis, providing a foundation for future studies of population genetics and phylogenetic relationships within this family.


Assuntos
Borboletas , Genoma Mitocondrial , Animais , Borboletas/genética , Filogenia , Genoma Mitocondrial/genética
17.
HGG Adv ; 4(3): 100199, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37216009

RESUMO

Cancer and autism spectrum disorder/developmental delay (ASD/DD) are two common clinical phenotypes in individuals with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS). Burgeoning studies have shown that genomic and metabolomic factors may act as modifiers of ASD/DD versus cancer in PHTS. Recently, we showed copy number variations to be associated with ASD/DD versus cancer in these PHTS individuals. We also found that mitochondrial complex II variants occurring in 10% of PHTS individuals modify breast cancer risk and thyroid cancer histology. These studies suggest that mitochondrial pathways could act as important factors in PHTS phenotype development. However, the mitochondrial genome (mtDNA) has never been systematically studied in PHTS. We therefore investigated the mtDNA landscape extracted from whole-genome sequencing data from 498 PHTS individuals, including 164 with ASD/DD (PHTS-onlyASD/DD), 184 with cancer (PHTS-onlyCancer), 132 with neither ASD/DD nor cancer (PHTS-neither), and 18 with both ASD/DD and cancer (PHTS-ASDCancer). We demonstrate that PHTS-onlyASD/DD has significantly higher mtDNA copy number than PHTS-onlyCancer group (p = 9.2 × 10-3 in all samples; p = 4.2 × 10-3 in the H haplogroup). PHTS-neither group has significantly higher mtDNA variant burden than PHTS-ASDCancer group (p = 4.6 × 10-2); the PHTS-noCancer group (PHTS-onlyASD/DD and PHTS-neither groups) also shows higher variant burden than the PHTS-Cancer group (PHTS-onlyCancer and PHTS-ASD/Cancer groups; p = 3.3 × 10-2). Our study implicates the mtDNA as a modifier of ASD/DD versus cancer phenotype development in PHTS.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Genoma Mitocondrial , Síndrome do Hamartoma Múltiplo , Neoplasias da Glândula Tireoide , Humanos , Síndrome do Hamartoma Múltiplo/genética , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Genoma Mitocondrial/genética , Variações do Número de Cópias de DNA/genética , Fenótipo , Neoplasias da Glândula Tireoide/genética , DNA Mitocondrial/genética , PTEN Fosfo-Hidrolase/genética
18.
Sci Rep ; 13(1): 6308, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072481

RESUMO

Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.


Assuntos
Quadruplex G , Genoma Mitocondrial , Malassezia , Humanos , Malassezia/genética , Filogenia , Genoma Mitocondrial/genética , Mitocôndrias/genética , DNA
19.
J Transl Med ; 21(1): 250, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038181

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer with high morbidity and mortality rates. Due to the heterogeneity of LUAD, its characteristics remain poorly understood. Exploring the clinical and molecular characteristics of LUAD is challenging but vital for early diagnosis. METHODS: This observational and validation study enrolled 80 patients and 13 healthy controls. Nuclear and mtDNA-captured sequencings were performed. RESULTS: This study identified a spectrum of nuclear and mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with diagnosis. The correlation coefficient for somatic mutations in cfDNA and patient-matched tumor tissues was high in nuclear and mitochondrial genomes. The mutation number of highly mutated genes was evaluated, and the Least Absolute Shrinkage and Selection Operator (LASSO) established a diagnostic model. Receiver operating characteristic (ROC) curve analysis explored the diagnostic ability of the two panels. All models were verified in the testing cohort, and the mtDNA panel demonstrated excellent performance. This study identified somatic mutations in the nuclear and mitochondrial genomes, and detecting mutations in cfDNA displayed good diagnostic performance for early-stage LUAD. Moreover, detecting somatic mutations in the mitochondria may be a better tool for diagnosing early-stage LUAD. CONCLUSIONS: This study identified specific and sensitive diagnostic biomarkers for early-stage LUAD by focusing on nuclear and mitochondrial genome mutations. This also further developed an early-stage LUAD-specific mutation gene panel for clinical utility. This study established a foundation for further investigation of LUAD molecular pathogenesis.


Assuntos
Adenocarcinoma de Pulmão , Ácidos Nucleicos Livres , Genoma Mitocondrial , Neoplasias Pulmonares , Humanos , Genoma Mitocondrial/genética , Detecção Precoce de Câncer , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , DNA Mitocondrial/genética
20.
Zool Res ; 44(3): 467-482, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36994537

RESUMO

Chalcidoidea is one of the most biologically diverse groups among Hymenoptera. Members are characterized by extraordinary parasitic lifestyles and extensive host ranges, among which several species attack plants or serve as pollinators. However, higher-level chalcidoid relationships remain controversial. Here, we performed mitochondrial phylogenomic analyses for major clades (18 out of 25 families) of Chalcidoidea based on 139 mitochondrial genomes. The compositional heterogeneity and conflicting backbone relationships in Chalcidoidea were assessed using various datasets and tree inferences. Our phylogenetic results supported the monophyly of 16 families and polyphyly of Aphelinidae and Pteromalidae. Our preferred topology recovered the relationship (Mymaridae+(Signiphoridae+Leucospidae)+(Chalcididae+((Perilampidae+Eucharitidae)+ remaining Chalcidoidea)))). The monophyly of Agaonidae and Sycophaginae was rejected, while the gall-associated ((Megastigmidae+Ormyridae)+(Ormocerinae+Eurytomidae)) relationship was supported in most results. A six-gene inversion may be a synapomorphy for most families, whereas other derived gene orders may introduce confusion in phylogenetic signals at deeper nodes. Dating estimates suggested that Chalcidoidea arose near the Jurassic/Cretaceous boundary and that two dynamic shifts in diversification occurred during the evolution of Chalcidoidea. We hypothesized that the potential codiversification between chalcidoids and their hosts may be crucial for accelerating the diversification of Chalcidoidea. Ancestral state reconstruction analyses supported the hypothesis that gall-inducers were mainly derived from parasitoids of gall-inducers, while other gall-inducers were derived from phytophagous groups. Taken together, these findings advance our understanding of mitochondrial genome evolution in the major interfamilial phylogeny of Chalcidoidea.


Assuntos
Genoma Mitocondrial , Vespas , Animais , Vespas/genética , Filogenia , Genoma Mitocondrial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA